| ||
![]() |
Пригласите вашего учителя в наш клуб | Как мне получить логин-пароль |
§ 03-ж. Вычисление силы Архимеда | ||||||||||
В предыдущем параграфе мы назвали две формулы, при помощи которых силу Архимеда можно измерить. Теперь выведем формулу, при помощи которой силу Архимеда можно вычислить. Закон Архимеда для жидкости выражается формулой (см. § 3-е): Fарх = Wж Примем, что вес вытесненной жидкости равен действующей силе тяжести: Wж = Fтяж = mжg Масса вытесненной жидкости может быть найдена из формулы плотности: r = m/V Ю mж = rжVж Подставляя формулы друг в друга, получим равенство: Fарх = Wж = Fтяж = mж g = rжVж g Выпишем начало и конец этого равенства: Fарх = rж gVж Вспомним, что закон Архимеда справедлив для жидкостей и газов. Поэтому вместо обозначения «rж» более правильно использовать «rж/г». Также заметим, что объём жидкости, вытесненной телом, в точности равен объёму погруженной части тела: Vж = Vпчт. С учётом этих уточнений получим:
Итак, мы вывели частный случай закона Архимеда – формулу, выражающую способ вычисления силы Архимеда. Вы спросите: почему же эта формула – «частный случай», то есть менее общая?
Поясним примером. Вообразим, что мы проводим опыты в космическом корабле. Согласно формуле Fарх = Wж, архимедова сила равна нулю (так как вес жидкости равен нулю), согласно же формуле Fарх = rж/г gVпчт архимедова сила нулю не равна, так как ни одна из величин (r, g, V) в невесомости в ноль не обращается. Перейдя от воображаемых опытов к настоящим, мы убедимся, что справедлива именно общая формула.
Продолжим наши рассуждения и выведем ещё один частный случай закона Архимеда. Посмотрите на рисунок. Поскольку бревно находится в покое, следовательно, на него действуют уравновешенные силы – сила тяжести и сила Архимеда. Выразим это равенством: Fарх = Fтяж Или, подробнее: rж gVпчт = mт g Разделим левую и правую части равенства на коэффициент «g»: rж Vпчт = mт Вспомнив, что m = rV, получим равенство: rж Vпчт = rт Vт
Преобразуем это равенство в пропорцию:
В левой части этой пропорции стоит дробь, показывающая долю, которую составляет объём погруженной части тела от объёма всего тела. Поэтому всю дробь называют погруженной долей тела:
Используя эту формулу, предскажем, чему должна быть равна погруженная доля бревна при его плавании в воде: ПДТ (полена) » 500 кг/м3 : 1000 кг/м3 = 0,5 Число 0,5 означает, что плавающее в воде бревно погружено наполовину. Так предсказывает теория, и это совпадает с практикой.
Итак, обе формулы в рамках являются менее общими, чем исходная, то есть имеют более узкие границы применимости. Почему же так произошло? Причина – применение нами формулы W = Fтяж. Вспомним, что она не верна, если тело или его опора (подвес) движутся непрямолинейно (см. § 3-г). Упоминавшийся нами космический корабль именно так и движется – по круговой орбите вокруг Земли. |
![]() |
Физика.ru • Клуб для учителей физики, учащихся 7-9 классов и их родителей |